

Institute for Energy Innovation

Assessing CO₂ Geologic Storage Impacts on Louisiana's Water Resources and Environment Progress Update

Frank Tsai, PhD, PE, PG

Professor, Department of Civil and Environmental Engineering Director, Louisiana Water Resources Research Institute Louisiana State University

Institute for Energy Innovation

July 25, 2024

Outline

- Motivation
- Project overview
- Large-scale geological and groundwater model development
- CO₂ transport simulation and baseline information collection for understanding carbon budget and land-surface deformation
- Next steps

CO₂ Geologic Storage in the Gulf Coast Region

200000

NORTH

AMERICA

Texas

200000

400000

Missour

Louisiana

400000

600000

ississio

800000

Tennesse

Alabama

Florid

Kentucky

- The Coastal Plains region has the most storage potential for CO₂, accounting for 65% of the national total.
- The Gulf Coast region of the United States has a large storage capacity for carbon dioxide (CO₂) through geologic sequestration. It accounts for 59% of the national CO₂ storage capacity. (USGS Circular 1386, 2012).

Gulf Coast Aquifer System (Grubb, 1998)

Lower Mississippi Gulf Region (LMGR)

600000

Easting (m)

Geologic Carbon Storage Potential in the United States (Blondes et al. 2019)

Department of Civil and Environmental Engineering

LMGR study area

800000

Concerns of CO₂ Geologic Storage

Potential leakage pathways and consequences (Benson and Hepple 2005)

Major geological structural features in southeast Louisiana (Gagliano 2005)

Project Overview

- Funding Source: LSU Institute for Energy Innovation
- Funding Program: Research for Energy Innovation 2023-I (Phase I)
- Project Title: Assessing CO₂ Geological Storage Impacts on Louisiana's Water Resources and Environment (Experimental)
- Project Period: 10/9/2023 10/8/2025 (2 years)
- Project Team:
 - Frank Tsai, Professor, Department of Civil and Environmental Engineering
 - Christopher Kees, Associate Professor, Department of Civil and Environmental Engineering
 - Yi-Jun Xu, Professor, School of Renewable Natural Resources
 - Ahmed Abdalla, Assistant Professor, Department of Civil and Environmental Engineering

Project Overview

Project Goal: Develop <u>baseline information</u> on geology, groundwater, carbon budget, land-surface deformation, and scenario-based CO₂ transport simulation to assess potential impacts of CO₂ storage in Louisiana's porous rocks on drinking water, water supplies, and the environment.

Project Overview

- Expected to have 12 to 16 CO₂ Injection wells the Lake
- Expected to start CO₂ injection in 2026

LSU

5-Nov 26

Oct 8-Nov

https://www.airproducts.com/louisiana-clean-energy/project-updates

Where Are Freshwater Zones and Potential CO2 Injection Zones?

LSU

Department of Civil and Environmental Engineering

LSU

Department of Civil and Environmental Engineering

3000

Module 1:

Workflow for Large-Scale High-Resolution Groundwater Model Development

ALC: 1992

Compilation of Driller's Logs and Electrical Logs

State	Driller's Logs	Electrical logs	Total
Alabama	3,106	702	3,808
Arkansas	34,278	1,191	35,469
Florida	152	16	168
Illinois	79	1	80
Kentucky	3,028	6	3,034
Louisiana	114,472	4,556	119,028
Mississippi	4,561	9,584	14,145
Missouri	15,368	11	15,379
Tennessee	11,933	145	12,078
Texas	8,071	10,804	18,875
Total	195,048	27,016	222,064

Number of well logs

Lower Mississippi-Gulf Hydrogeologic Framework

2: Limestone Lithofacies

LSU

Lower Mississippi-Gulf Lithologic Model

Louisiana Lithologic Model (Provisional Result)

Louisiana Lithologic Model (Provisional Result)

Louisiana Groundwater Model

- Parallel MODFLOW 6 Unstructured Grid
- Nearly 4.4 million 3D cells
- 2004-2021
- 9 sub-models
- 16 EXG files
- Single core: 15 hr 44 min
- 9 cores: 1 hr 50 min
- Speedup: 8.6

Pumping wells > 24,500

Simulated Groundwater Level

Contractor Contractor

Simulated groundwater level on 12/2021

Module 2 (Kees) – CO₂ Transport (Computational Modeling)

- Developing model verification and validation on the laboratory experiment and international benchmark of Nordbotten, J. M., Fernø, M., Flemisch, B., Juanes, R., & Jørgensen, M. (2022). Final Benchmark Description: FluidFlower International Benchmark Study.
- Building on existing multiphase flow models and numerics for unstructured mesh representations of subsurface geology
- Extending recently developed high-resolution Finite Element Methods based on Flux Corrected Transport (FCT)

Module 2 (Kees) – CO₂ Transport (Computational Modeling) (provisional result)

Unstructured FEM mesh extracted from benchmark data (above) under soil/rock properties, and water

flood

Module 3 (Xu) – Understand the Carbon Budget of Lake Maurepas

Objectives:

- To determine levels and fluctuations of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and partial pressure of dissolved carbon dioxide (pCO₂) in Lake Maurepas, the Amite River, and water wells near the lake;
- To quantify total mass inputs and/or exchange of DIC and DOC from the river and groundwater into Lake Maurepas, and investigate seasonality of the inputs;
- To estimate hourly, daily, and monthly outgassing rates of CO₂ from the lake and river water surface; and
- To assess the factors affecting dissolved carbon mass transport and CO₂ outgassing in the Amite-River-Lake-Maurepas continuum.

Module 3 (Xu) - Monitoring CO, Concentrations (provisional result)

Field measurements

- Air and water temperature
- pCO_2
- Turbidity
- Dissolved oxygen
- Chlorophyll
- cDOM
- Wind speed

Lab analysis

- DIC
- DOC

Field measurements and sampling conducted in the Amite River at Port Vincent and Lake Maurepas at Pass Manchac north and south

Module 4 (Abdalla) - Monitoring Land Surface Displacement around Lake Maurepas

- Preliminary survey over Lake Maurepas assessed 25 InSAR images in 2017
- Sentinel-1 Satellite images produced every 12 days
- Good SAR coverage exists at the boundary of Livingston and St. John the Baptist Parish Parishes.
- Low SAR signal is shown in the vegetation area.

Module 4 (Abdalla) - Monitoring Land Surface Displacement around Lake Maurepas (provisional result)

Displacement per image 2/27/2017 to 12/24/2017

Department of Civil and Environmental Engineering

Average velocity of 2017

Next steps

- Analyze geological structure and groundwater flow for the Lake Maurepas area
- Post-process the MODFLOW 6 mesh and model results for high-resolution Finite Element Methods for CO₂ simulation
- Continue CO₂ concentration monitoring and analysis
- Continue land surface displacement analysis with satellite data

Thanks for your attention!

Questions?

