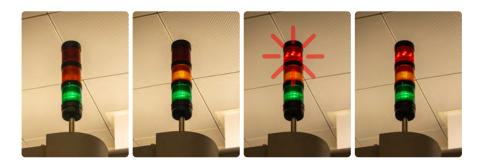

Heliscan MicroCT (Mark II) Basic Quick Guide

Starting up

!!!Before starting your scan!!!


- 1. On your computer your cell phone go to FBS system and START your session.
- 2. In FoxtrotUI navigate to System > Calibration > X-Ray Alignments.
- In the popup window, locate the "Filament Lifetime".
- 4. Record the "Filament Lifetime" in the logbook and close the popup window.
- 5. At the end of your scan, return to the "Filament Lifetime" and record it in the logbook again and STOP your session on the FBS system.

LSU Shared Instrumet Facility (SIF)

Thermo Fisher HeliScan X-ray microCT LogBook Date: Operator: Sample Description: PI/Company: Power: Start Time: Filament hours: Department: Comments: End Time: Filament hours: Account:

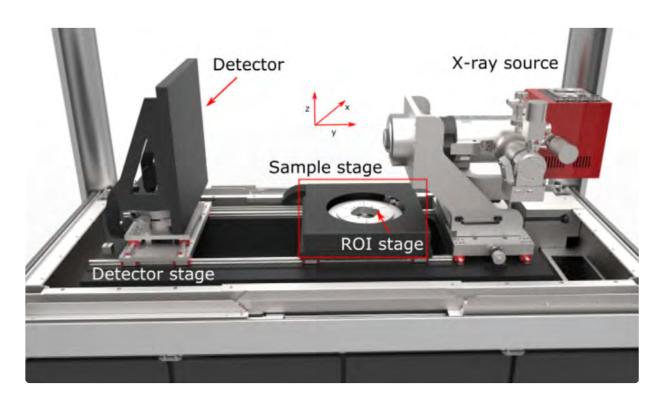
X-ray generation and safety indicators

Enable and unable X-ray generation

To enable X-ray: close all system doors and press the X-ray Arm button

To unable X-ray: press the X-ray Disarm button and you can open the doors if needed.

Indicator statuses


X-ray lamp statues

Signal	Description
Green •	System is powered
Green and Yellow O	X-ray generation is enabled
Green, Yellow and Red blinking	X-ray is starting to be generated
Green, Yellow and Red 🔵 🔵 🛑	X-ray is generated

Control panel LED

Status	Meaning
LED is off	X-ray generation is enabled and doors are locked
LED is on	X-ray generation is disabled
LED is blinking	X-ray generation is disabled and doors are locked

Motion System

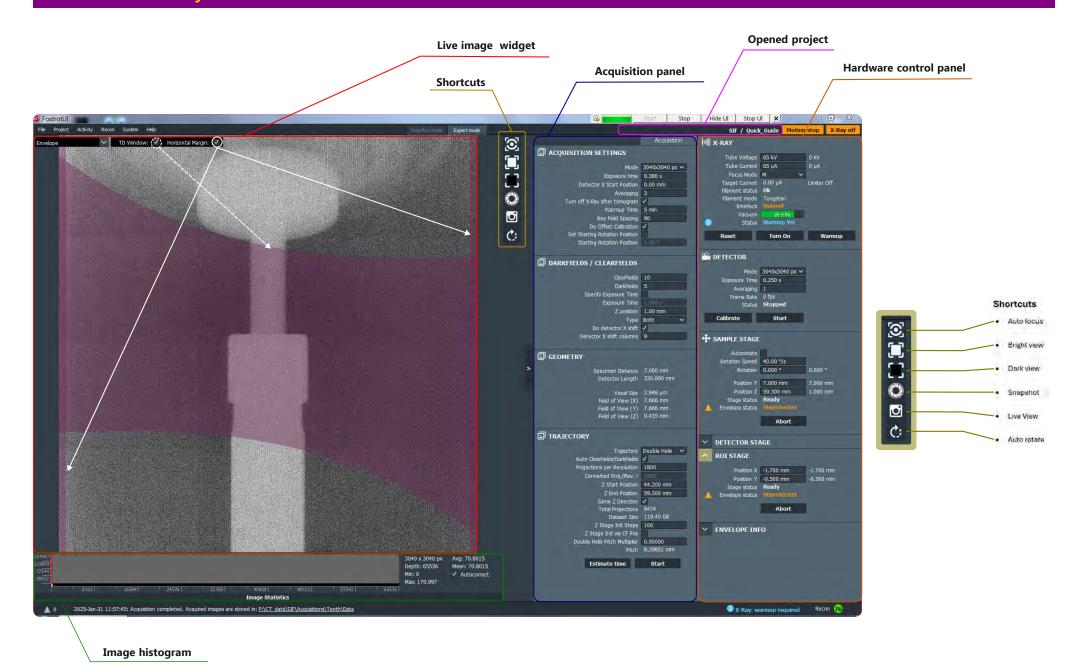
Motion System

Max load 15 kg

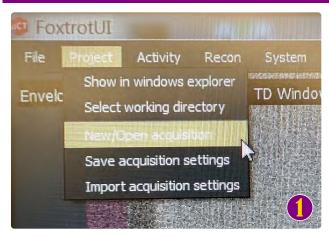
Z axis travel 195 mm

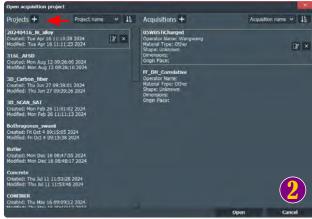
R axis 360° continuous rotation

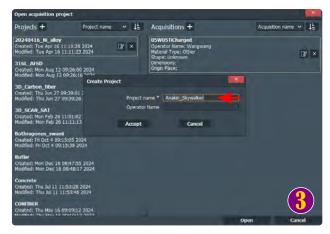
Y stage travel 400 mm


Y detector travel 830 mm

X detector travel 100 mm


ROI X travel -20 mm - 20 mm


ROIY travel -20 mm - 20 mm


FoxtrotUI layout


Creating a new project/file

- 1. Go to Project > New/Open acquisition.
- In the "Open acquisition project" window, click the + sign on the right side of "Projects".
- In the "Create Project" window, enter your PI's name (laboratory), if it doesn't already exist, and click Accept.
- Once the project is created, in the "Open acquisition project" window, select the project and click the + sign on the right side of "Acquisitions".
- In the "Create acquisition" window, fill in the fields "Acquisition name", "Operator Name", and "Sample Filter Notes" and click Accept.
- 6. Your scan will then be ready to acquire and saye within your laboratory's folder (project).

Setting acquisition

Acquisition panel

Scan Setup

X-ray

Select Tube Voltage and focus mode based on sample composition, thickness and desired voxel size

Adjust Tube current to optimize the target current

Detector

Select Mode (number of pixels on the detector)

Select Start to get a live view

Sample Stage

Lower position Z to 1 mm to get a Clearfield

Detector Stage

Move detector Y position to 330 mm (unless higher magnification is required)

Increase the exposure time to get the maximum number of counts at the detector without oversaturating it.

- Clearfield with Optimum Counts (~45,000 max)
- Oversaturated Clearfield (~>55,000)

Sample Stage

Move the sample closer to the source using **Position Y. Autorotate** the sample while adjusting Y stage and use the **Horizontal Margin** to ensure there is Clearfield all around the sample

Select **Z Start position** by moving the sample lower using **Position Z.** Use the **TD window** as a guide to ensure the sample will transition though the middle region.

ROI Stage

Centralize the sample by setting Position X and Y using the rotation on the Sample Stage settings.

- Position X: 0° and 180°
- Position Y: 90° and 270°

Sample Stage

- Autorotate
- Select Z End Position by moving the sample higher using Position Z. Use the TD window as a
 guide to ensure the sample will transition though the middle region.

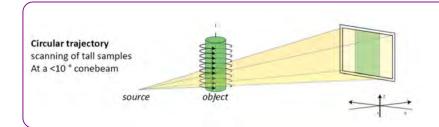
Setting acquisition

Review of all Acquisition Settings

ACQUISITION SETTINGS

- Detector Mode: matching the one selected during live view
- Exposure time: matching the one selected during clearfield live view
- Averaging: Increasing the number of projections to average will reduce noise in the image while spending more time acquiring the tomogram
- Turn off X-ray after tomogram: Selected in most cases to prolong the filament lifetime acquiring images rather than remaining idle
- Warmup Time: Recommended if the source has been off for a while

DARKFIELDS / CLEARFIELDS

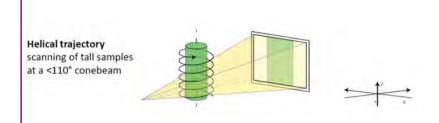

- Clearfields: 10 (Recommended)
- Darkfields: 5 (Recommended)
- Exposure time: Matching the projection acquisition exposure time, unless a different exposure time want to be acquired to avoid oversaturating the detector (application specific)
- · Z Position: 1 mm usually
- Type: Both (Recommended)
- Do detector X-shift: Yes, to avoid helical/circular artifacts
- Detector X-Shift Columns: 9 (recommended)

TRAJECTORY

- Select Trajectory
- · Auto Clearfields/Darkfields: Yes, unless the sample does not allow it

Review Estimate Time and Start Acquisition

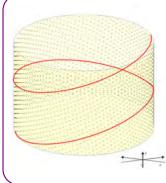
Trajectories



Trajectories:

<u>Circular scanning mode</u>: This trajectory is based on rotating the sample through 360 degrees of projections at fixed vertical position with respect to the X-ray source.

Benefit: a small number of projections are required.

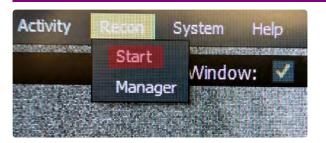

Drawback: the reconstruction algorithm to work, an assumption that all the X-ray paths from the source that reach the detector are parallel must hold true.

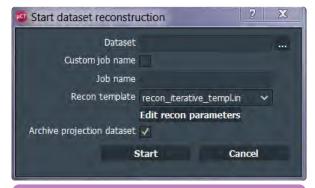
<u>Double Helix scanning mode</u>: During helical scan the sample is simultaneously rotated and moved up to the next position at which the projection image of the X-rays passing through the sample is acquired. This allows to image a longer object – with diameter vs height aspect ratio up to 10 (AR:10) – within a single scan or to scan several objects, mounted on top of each other, without a need for remounting the samples between every scan.

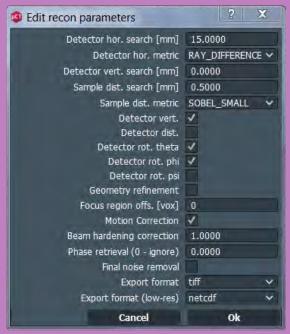
Benefit: (1) It allows the detector to be moved very close utilizing as much X-ray flux as possible (i.e. better signal to noise ratio); (2) all reconstructed points have travelled through the midplane of the detector allowing for a theoretically exact reconstruction of the data and (3) very tall sample can be scanned resulting in tall tomograms.

Drawback: requires a much more precise knowledge of system geometry for the reconstruction to work and has 6 degrees of freedom that need to be known accurately. A helical trajectory also required more projections for the same final tomogram volume as a single circular scan.

Schematic visualization of the X-ray beam trajectory with respect to the scanned sample (yellow cylinder) during:


- **Helical scan** (red line) projections are acquired in a continuous trajectory curve with a progressive increment of the rotation angle and vertical travel
- Space-Filling scan (dark dotes) acquisition of the mutually independent projections is evenly spread with respect to the sample volume across whole vertical travel


Space-filling mode: This allows generating high-quality images with reduced amount of the acquired projections.

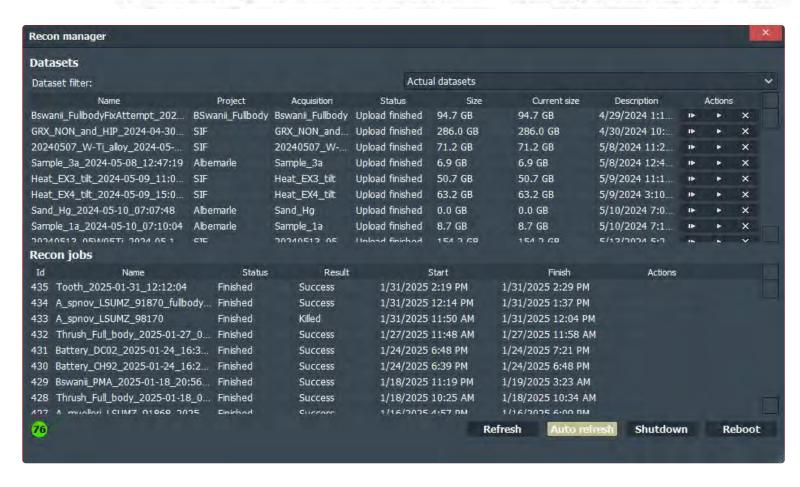

Benefit: (1) High cone-angle imaging; (2) entire detector area is fully utilized; (3) half the overscan required in comparison with Double Helix; (4) More uniform sampling of the object reducing the artifacts e.g., non-uniform magnification, helical filtering, streaking around high-density inclusions and secondary source.

Drawback: (1) May result in a lower signal-to-noise ratio (SNR) and (2) increased computational complexity for reconstruction.

Reconstruction

Reconstruction

- Once the scan is complete, navigate to Recon > Start and select the full-frame dataset that was
 just acquired.
- 2. Choose the appropriate reconstruction template:
 - Space filling → recon_iterative_templ.in
 - Double Helix → recon_FBP_templ.in
 - Circular → recon_FBP_circular.in


Note: If necessary, click on "Edit recon parameters" and adjust the "Beam hardening correction" value. The range is **0.7 to 2.0**, with recommended starting values at **1.4**, increasing in increments of **0.2** until you achieve a satisfactory result.

- 3. Ensure that the "Archive projection dataset" box is checked to automatically save the reconstruction once completed.
- 4. Click Start to begin the reconstruction.

Reconstruction

- 5. Navigate to Recon > Manager.
- 6. The top half of the window will display the dataset as it uploads to the cluster. Once the upload is complete, a new job number will appear in the bottom half of the window. Enabling Auto Refresh will periodically update the status, showing the start time, finish time, and current status of the reconstruction.
- 7. Once finished, the reconstructed data will be available in the project folder on the SIF server.

